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Abstract

Interest in measurement issues remains unabated, as evidenced by published research in the area of reliability, validity, and, in particular,

scale development. At the same time, psychometricians have continued to generate alternative measurement approaches and models at an

explosive pace. Surprisingly, these alternative measurement approaches have been slow to diffuse into the marketing literature despite

marketers’ inherent interest in measurement issues. This paper discusses one such measurement approach, item response theory (IRT), which

can potentially address critical measurement concerns. My focus is on identifying basic principles and key characteristics and on providing an

assessment for applied researchers. Toward this end, an empirical example of role conflict (RC) and role ambiguity (RA) concepts is included

to illustrate IRT principles and amplify the theory’s relevance to resolving measurement dilemmas. In addition, I provide a comparison with the

current paradigm of measurement—classical test theory (CTT)—to afford a balanced appreciation of the payoffs of adopting the IRTapproach.
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The link between observation and formulation is one of

the most difficult and crucial to scientific enterprises.

Greer (1969, p. 160).

Unfortunately, a not uncommon phenomenon in the

literature today is a ‘study’ in which the authors sent a

nonpretested, nonscaled questionnaire to a convenience

sample of uncertain nature in which little or no thought

was given to the reliability of the measurement or the

meaningfulness of responses.

A respondent quoted in Campbell et al. (1982, p. 61).

1. Introduction

Consider the following measurement problems facing a

marketing researcher today:� In developing items for a new measurement scale, the

researcher faces a choice between selecting items that are

either (a) similar to each other and thus maximize reliability

(or fidelity) or (b) different from each other, covering the

focal construct broadly and thus maximize validity (or

bandwidth). The researcher is aware that a tradeoff is

involved since, in their metaanalysis, Churchill and Peter

(1984, p. 370) observed that maximizing reliability tended

to favor selection of ‘‘items (which) were so similar (to each

other) that they underidentify constructs.’’� In deciding the direction of wording for a unidimen-

sional set of scale items, the researcher can either (a) have

all items worded in the same direction or (b) split the set

with half the items worded in the positive direction and the

remaining items worded in the negative direction. However,

the researcher is aware that, although the latter approach is a

better measurement practice, it is also likely to undermine

the unidimensionality of items.� In developing a ‘‘short form’’ of a unidimensional scale

to reduce respondent burden, the researcher decides to select

the three items with the highest factor loadings. However,

the researcher is unclear as to how this will affect and/or

compromise construct validity. Neither is the researcher

aware of any other reasonable criteria for developing short

forms of established scales.� In working with an important construct that was

developed, say 30 years ago, the researcher is not sure

whether to (a) use just the original items or (b) modify and/

or enhance the original set by including additional items to

tap current reflections of the underlying construct that were

not anticipated by original developers. Neither is the re-
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searcher sure of the best approach to judging the adequacy of

the original items.

Not unlike the market environment, the field of measure-

ment theory and method has witnessed exciting, unforeseen

changes in the last decade. Interest in understanding meas-

urement—the link between observed and latent trait phenom-

ena (what Greer, quoted above, called ‘‘formulation’’)—

appears to be intensifying. In 1993, the first Handbook of

Marketing Scales was published by Sage Publications in

cooperation with the Association of Consumer Research,

and shortly thereafter, the American Marketing Association

came out with its own handbook. Both handbooks have been

recently updated and expanded, indicating that ‘‘new’’ scales

continue to be developed at a record pace in the social

sciences in general and in marketing in particular. For

instance, between 1990 and 1998, no fewer than 87 new

scales were published in the marketing literature alone

(Bearden and Netemeyer, 1999). This intensity is possibly

sparked by growing discomfort with available measures and

the lack of attention to measurement issues in past research,

as the anonymous respondent suggests in the headnote.

Contemporary views of marketing research increasingly

resonate with Schwab’s (1980, p. 34) admonition that theor-

etical progress has ‘‘suffered because investigators have not

accorded measurement the same deference as substantive

theory (and) as a consequence, substantive conclusions have

been generated that may not be warranted.’’ Thus, outstand-

ing measurement problems such as those noted above are

gaining attention, and effort is underway to seek appropriate

solutions and meaningful insights, as evidenced by this

special issue on measurement.

How can a marketing researcher address these measure-

ment problems? Most measurement approaches in market-

ing rest on classical test theory (CTT; Lord and Novick,

1968). CTT principles are evident in measurement methods

ranging from reliability assessment and confirmatory factor

analysis to scale development procedures (Churchill, 1979;

Gerbing and Anderson, 1988). Arguably, CTT is the dom-

inant paradigm for addressing measurement problems in

marketing research.

However, the literature on measurement and psychomet-

rics has grown increasingly diverse. New measurement

approaches have been developed. New methods, parametric

and nonparametric, have been proposed. Even by the mid-

1980s, Lewis (1986) had concluded that a researcher could

choose from over 50 different measurement models depend-

ing on the researcher’s particular needs and inclination

(Thissen and Steinberg, 1986). There is little evidence to

suggest a slowdown in the proliferation of measurement ap-

proaches. Unfortunately, although these developments have

swept the areas of educational psychology and psychomet-

rics, the marketing literature has remained largely insula- ted

and tended to focus exclusively on CTT-based approaches.

This paper aims to draw attention to one such alternative

approach—the item response theory (IRT) approach—that

appears particularly promising for addressing the abovemen-

tioned contemporary measurement problems. Although IRT

is not a new methodology (early IRT work dates back to the

1900s), published applications of IRT in the marketing

literature are largely conspicuous by their absence (see,

however, Balasubramaniam and Kamakura, 1989; Singh et

al., 1990). Perhaps this is because advances in IRT tech-

nology and its tractability for practical applications have

occurred only recently, and an impression persists that IRT

is theoretically complex, difficult to implement, requires

huge data sets, and is incoherent in its message to applied

researchers. The specific purpose of this paper is to provide

an accessible review of IRT by utilizing a three-pronged

strategy. First, I aim to elucidate IRT’s principles and

demonstrate its relevance by illustrating how researchers

can utilize this approach to address measurement problems.

However, I do not claim to provide a complete, exhaustive,

and in-depth tutorial on IRT models. The vast and growing

literature on these models makes such a task difficult at best.

Instead, my modest aim in this paper is to stimulate the

interest of marketing researchers in issues of measurement

theory and to discuss a particular theory (IRT) that departs

from the currently dominant paradigm in marketing (i.e.,

CTT). Second, with the aim of demonstrating IRT’s potential,

I maintain a stance of comparative analysis throughout the

paper; IRT assumptions and principles are compared with

those of CTT; IRT results are compared with those obtained

from CTT for two illustrative constructs; and the different

approaches for tackling the abovementioned measurement

problems are highlighted. Although I include this illustration

only to make vivid the comparison between the IRT and CTT

approaches, I wish to emphasize that IRT is not a panacea for

all measurement woes. Rather, IRT is just another approach

that rests on different assumptions than CTT and, as a

consequence, allows researchers to tackle measurement

issues differently. At the same time, IRT can coexist with

CTT, and in many instances, these approaches might

complement each other. Third, I aim to show that IRT is an

interesting methodology because, in the tradition of Davis

(1971), it reveals insights into measurement characteristics of

items, measures, and concepts that (1) CTT cannot unravel

and (2) challenge conventional wisdom about methods for

tackling measurement problems. I begin by drawing a dis-

tinction between measurement and substantive theory and

thereafter develop a comparative analysis of CTT and IRT

approaches.

2. Measurement theories vs. substantive theories

Relationship between independent and dependent vari-

ables are the focus of. . .substantive [theories]. However,
substantive research constitutes only one part of the

research process. An equally important set of research

issues involves the relationship between. . .measures and

the concepts or constructs they are purported to assess.

Schwab (1980, p. 4).
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A measurement theory sets down rules—referred to as

correspondence rules—for linking empirical observations

(observables) to abstract, unobservable (latent) concepts1

(Blalock, 1968; Weiss and Davison, 1981). In other words,

a measurement theory describes how a measuring instru-

ment or scale performs its measuring function—that is, how

the observations obtained by using an instrument translate to

a position on the latent concept purported to be measured by

that instrument. For instance, in the case of role conflict

(RC), a measurement theory hypothesizes how the observed

scores on the eight items of Rizzo et al.’s (1970) RC scale

map onto the latent continuum representing the concept of

RC. Such a theory may account for the characteristics of the

observed scores, of the latent continuum, and of the cog-

nitive mechanisms that underlie an individual’s response to

the posited items (Lord, 1952; Lord and Novick, 1968).

In accord with Schwab’s (1980) comment, measurement

theories must be differentiated from substantive theories,

however. The former contains hypotheses about the rela-

tionship between a latent concept and its observables, while

the latter specifies hypotheses about the relationships among

latent concepts. Thus, for instance, the hypothesized rela-

tionship among the concepts of RC, role ambiguity (RA),

and job satisfaction is the domain of substantive theory, but

understanding how the operational measures or observables

relate to their corresponding concept is the concern of

measurement theory.

At a more abstract level, however, measurement and

substantive theories share some common elements. Both

specify conceptual models that allow development of formal

hypotheses for empirical investigation. Because measure-

ment theories are not well understood in marketing research,

the preceding elements (i.e., hypotheses and models) are

more easily recognized in a substantive context. For

instance, in the case of RC, Kahn et al. (1964) posited the

role-episode model (also see King and King, 1990) that

specifies (1) definition of the RC concept itself, (2) other

concepts that are expected to relate to the RC concept as

either antecedents or consequences, and (3) the nature and

form of the relationships among the antecedents, RC, and its

consequences (referred to as the nomological net). This role-

episode model in turn serves as the foundation for devel-

oping specific hypotheses concerning the antecedents and

consequences of the RC concept that can be empirically

tested.

A parallel notion of a conceptual model and hypotheses

is relevant for a measurement theory. For instance, the

conceptual model in a measurement theory may involve

(1) characteristics of observed scores including their num-

ber, their complexity, and their scale properties, (2) prop-

erties of latent variable(s) thought to be measured by the

observed scores, including dimensionality and scale prop-

erties, and (3) a mathematical model to represent the

relationship between latent variables and observed scores.

Here, the observed scores are data elements that are

obtained through some operational mechanism, including

an individual’s responses on a scale, a supervisor’s ratings

of one or more subordinates, a key informant’s assessment

of an organizational property, or measures secured via some

observational device. In contrast, latent variables are unob-

served organizational and/or individual properties that are

often inferred on the basis of some observed variables.

Finally, the mathematical model is usually consistent with

some assumptions about the response process that individ-

uals or informants utilize in developing a response to the

posited questions or statements. Table 1 lists various char-

acteristics of a measurement theory (see first column) and

specific properties for the RC and RA concepts implied

under different measurement theories (i.e., IRT and CTT). I

use the RC and RA concepts to illustrate the principles of a

measurement theory and highlight the characteristics along

which different measurement theories differ. However, the

principles are general and can be applied broadly. Next, I

discuss IRT and CTT measurement theories in the context of

RC and RA concepts.

3. IRT vs. CTT: underlying conceptual model

and hypotheses

Before discussing the characteristics and differences

summarized in Table 1, it may be useful to provide a brief

discussion of the illustrative concepts and their suitability

for comparative analysis. Although any of the marketing

concepts could have been utilized to compare IRT and CTT

principles, several reasons favored the choice of RC and RA

concepts (Kahn et al., 1964; Rizzo et al., 1970). First, both

constructs are based on a rich and long tradition of

theoretical and empirical work (e.g. Kahn et al., 1964;

Biddle, 1986; Jackson and Schuler, 1985; Ford et al.,

1975; Whetten, 1978; Pearce, 1981; King and King,

1990). In addition, these role constructs have attracted

extensive empirical research, including two metaanalysis

(Fisher and Gitelson, 1983; Jackson and Schuler, 1985) and

several critical reviews (Schuler, 1977; Pearce, 1981; Van

Sell et al., 1981; King and King, 1990). Second, RC and

RA have continued to retain their importance in the mar-

keting researcher’s arsenal of theoretical constructs that can

be used to study the impact of organizations on individuals

and role occupants’ behavioral and psychological responses

(Singh, 1993; Churchill et al., 1985; Fry et al., 1986;

Michaels et al., 1987; Behrman and Perreault, 1984;

Edwards, 1992). Third, measurement of these constructs

has elicited persistent and, in some instances, trenchant

criticism (Schuler, 1977; Tracy and Johnson, 1981; House

1 Following Kerlinger (1986, Chap. 2), I distinguish between the terms

‘‘concept’’ and ‘‘construct.’’ Specifically, ‘‘construct’’ is utilized to refer to

a ‘‘concept’’ with added meaning, in that it indicates that a deliberate and

conscious attempt has been made to define, specify, and operationalize the

focal abstract phenomenon (i.e., the ‘‘concept’’) for the purpose of scientific

study.
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et al., 1983; McGee et al., 1989). King and King (1990,

p. 62) went as far as to conclude, ‘‘We firmly believe that

partial responsibility for the inconsistencies in research

findings about RC and RA is due to deficiencies in

measurement.’’ Fourth, several researchers have called

for utilizing IRT methods to examine the measurement

issues surrounding theses constructs (King and King,

1990; Singh and Rhoads, 1991), yet no empirical study

has tackled these issues. Below, I provide a brief back-

ground on RC and RA concepts, constructs, and their

measures, explain the sources of data for the current

study, and highlight key measurement concerns.

Concept definitions. Both RC and RA can be defined

either from an objective (i.e., verifiable conditions in the

work environment) or subjective (i.e., experienced

psychological evaluation) standpoint. However, the

subjective assessment has received the most attention.

Thus, subjective RC is defined as the role occupant’s

evaluation concerning the degree of incompatibility of

expectations associated with different role senders (e.g.,

boss, customers, and family). In other words, RC arises

when a role occupant believes that compliance with the

expectations of one role sender would make it more

difficult to comply with another role sender’s expect-

ations. The subjective RA is defined as the role

occupant’s evaluation of the degree to which clear

information is lacking about (1) role expectations, (2)

methods for fulfilling role expectations, and/or (3) the

consequences of role performance.

Operational measures. The RC and RA constructs were

measured in the study by the specific scales developed

by Rizzo et al. (1970). These scales have been used

extensively in the literature. In fact, Jackson and Schuler

(1985) report that 85% of the studies that they

metaanalyzed had utilized the Rizzo et al. measures. In

these measures, RC is assessed by eight items and RA by

seven items (see Appendix A for item descriptions).

Each item has a five-point ‘strongly agree–strongly

disagree’ Likert scale.

Measurement concerns. Two concerns dominate RC and

RA research. First, persistent questions have been raised

about the discriminant validity of Rizzo et al.’s measures.

In other words, the question is this: Do the RC and RA

scales measure two unique, distinguishable constructs, or

are the items in both measures simply different indicators

of one general construct (e.g., role stress)? Although

several empirical studies have been conducted to address

this question (Tracy and Johnson, 1981; Schuler et al.,

1977; McGee et al., 1989), at best, the answer has been

equivocal, with empirical evidence forthcoming on both

sides of the debate. Second, the fidelity of Rizzo et al.’s

measures has been repeatedly challenged. That is,

researchers ask if these measures are able to capture the

entire domain of the RC and RA constructs. King and

King (1990, p.53) argued that Rizzo et al.’s measures ‘fall

short in adequately sampling the richness and compre-

hensiveness of (their) theoretical content domains.’ To

date, this issue has not been empirically resolved.

Data source. The data utilized here to illustrate IRT

analysis for RC and RA constructs involved 472

responses from salespeople selected from a list of the

members of the association of Sales and Marketing

Executives (referred to as the SME sample). The profile

of the SME sample is as follows: 72% male, 41–45 years

of median age, 4–5 years of median experience on the

job, and over 60% earn above US$50,000 yearly.

Next, I turn to a discussion of Table 1.

3.1. Characteristics of observed variables

The observed variables have three characteristics. The

first characteristic is the number of indicants, items, meas-

Table 1

Measurement theories: illustrations of differences in models and characteristics often implied under factor analytic CTT and 2PL IRT models for the RC and

RA conceptsa

Elements of measurement theory CTT IRT

RCb RAb RCb RAb

Characteristics of observed variables

Number Eight items Seven items Eight items Seven items

Complexity Simple Simple Simple Simple

Scale property Interval Interval Ordinal Ordinal

Characteristics of latent variables

Dimensionality Unity Unity Unity Unity

Scale property Interval Interval Interval Interval

Mathematical model for relationships

Form Linear Linear Nonlinear Nonlinear

Parameters lc lc a and bd a and bd

Equatione X =lT+ e X =lT+ e P(q)=[1 + exp[� a(q� b)]� 1 P(q)=[1 + exp[� a(q� b)]� 1

a The key differences are in bold for clarity.
b The specific conceptualization and operational measure utilized here is based on Kahn et al. (1964) and Rizzo et al. (1970).
c Parameter l refers to a factor loading in a common or confirmatory factor analysis.
d Parameter a is referred to as the discrimination or sensitivity parameter and is analogous to parameter l in CTT. However, parameter b is a threshold or

affectivity parameter and is introduced to account for ordinal response categories.
e For more details on the equations, see Appendix B.
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ures, or observables utilized to measure the focal concept(s).

For the RC and RA concepts, there are eight and seven

observables, respectively, in the operational scales

developed by Rizzo et al. (1970). The second attribute is

the complexity of each observable in terms of the number of

latent variable(s) it purports to measure. For instance, the

complexity level of each RC/RA item is ‘‘simple,’’ since

each item is hypothesized to measure one and only one

latent variable. Readers can contemplate instances in which

an observable might be relatively complex, providing data

on multiple latent constructs (e.g., as in multitrait, multi-

method designs). Finally, the third feature is the scale

property. Following Stevens (1946), I explicitly recognize

that an observable can have nominal, ordinal, interval, or

ratio scale characteristics (Gaito, 1980; Michell, 1986). In a

nominal scale, the numbers merely identify a specific object

(e.g., social security number); an ordinal scale ranks differ-

ent objects (e.g., in gradations of more or less); and an

interval scale ranks objects in such a manner that a differ-

ence between ranks is constant. Lastly, a ratio scale pos-

sesses a natural or absolute zero point in addition to interval

scale properties.

In comparing IRT and CTT characteristics for observed

variables, Table 1 reveals that the scale property is a source

of distinction. Recall that each RC and RA item was

measured by using a five-point ‘‘strongly disagree–strongly

agree’’ Likert-type response scale (coded from 1 to 5). In

using CTT, researchers assume that such response scales

involve interval-type data so that the computation of means,

correlations, and other inferential statistics (e.g., reliability

coefficients) is justified (Lord and Novick, 1968). In prac-

tice, this assumption is rarely tested before applying CTT

methods. In contrast, IRT does not require that researchers

presuppose that Likert-type data possess interval properties.

Rather, in using IRT, response categories corresponding to

such phrases as (1) strongly disagree, (2) disagree, (3) neither

agree nor disagree, (4) agree, and (5) strongly agree or to

variations of this general theme can be assumed to involve

categorical, rank-ordered data. As discussed later, this

distinction has important implications for the mathematical

model underlying CTT and IRT.

3.2. Characteristics of latent variables

The latent variables are characterized by two attributes,

namely dimensionality and scale property. Dimensionality

refers to the number of distinct theoretical ‘‘factors’’ that are

hypothesized to underlie a set of observables. This attribute

follows from the principle of local independence according

to which variances and covariances among a set of observ-

ables can be attributed to only three sources: (1) systematic

variance on account of one or more (usually prespecified)

latent variables, (2) unique variance specific to each observ-

able, and (3) random error variance (McDonald, 1982; Lord

and Novick, 1968). The specification of the number of latent

variables under the first condition above constitutes a

hypothesis for the dimensionality attribute. For RC and

RA, each role concept is conceptualized as unidimensional,

so that a single latent ‘‘factor’’ is hypothesized to underlie

the observed responses. Note that this hypothesis follows

from a substantive theory about the individual role concepts;

as such, this hypothesis remains invariant across different

measurement theories.

The scale property of latent variables is akin to the scale

characteristic of observables. Here, the hypothesis involves

whether latent variable(s) have nominal, ordinal, interval, or

ratio properties. In general, this hypothesis is likely to stem

from the substantive theory about the nature of the latent

variables. For RC and RA, the role theory espoused and

refined by Kahn et al. offers an insight into these role

concepts. Both RC and RA represent a role occupant’s

perceptions about the pressures and expectations of role

senders; however, as perceptual concepts, roles may be

indexed by the degree to which they contain more or less

RC and/or RA. In this sense, the latent variables of RC and

RA are continuous random variables with interval-type scale

properties. As before, this substantive hypothesis remains

invariant across measurement theories.

Taken together, the hypotheses for observed and latent

variables help delineate areas of similarity and points of

distinction between CTT and IRT approaches. While the

CTT draws correspondence rules between intervally scaled

observables and intervally scaled latent variables, the IRT

maps ordinally scaled observables onto intervally scaled

latent variables.2 This mapping or correspondence is cap-

tured by a mathematical model.

3.3. Mathematical model

Three characteristics define a mathematical model that

specifies the relationship between observables and a latent

variable. First, the form of the model is considered. Notably,

although CTT hypothesizes a linear function, IRT posits a

nonlinear function. Readers will note that a nonlinear

function is more general and subsumes a linear relationship.

Under IRT, the nonlinear function between the responses to

an individual item and the underlying latent variable is

referred to as the item response function (IRF). A variety of

IRT models exist for different types of observed variables,

contexts, and assumptions about the response process

(Thissen and Steinberg, 1986). For instance, in the case

of dichotomous response category data, potential IRT

models include the Rasch or one-parameter logistic model

(Rasch, 1960; Wright and Stone, 1977; Hambleton and van

der Linden, 1982), the two- and three-parameter logistic

model (Birnbaum, 1968; Lord and Novick, 1968), and

nonparametric model (Mokken and Lewis, 1982). Corres-

2 Some researchers have argued that the level of measurement

associated with the monotonic IRT models discussed here (see Section

3.3) is no more than ordinal (van der Linden and Hambleton, 1997).
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ponding models are available for polytomous response

category data as well (Bock, 1972; Masters, 1982; Same-

jima, 1969). In addition, ‘‘unfolding’’ IRT models are

available that do not assume monotonically increasing

IRFs; instead, such models involve single-peaked, non-

monotonic IRFs (Roberts et al., 2000; Van Schuur and

Kiers, 1994). The choice of a specific model is often guided

by multiple concerns including the scale property of

observed variables (e.g., either nominal or ordinal), the

purpose of the study at hand (e.g., analyzing attitudinal or

intelligence testing items), and the data demands of indi-

vidual IRT models (see van der Linden and Hambleton,

1997; McDonald, 1999). To make this analysis relevant, I

focus on an IRT model that would be appropriate for

analyzing responses to attitudinal or personality-type scale

items. Such scales have dominated marketing research to

date, and their position is likely to remain unchallenged into

the near future (Bearden and Netemeyer, 1999). To keep the

discussion simple and focused on illustrating IRT princi-

ples, I selected an IRT model that is appropriate for

observed responses obtained on a dichotomous agree/dis-

agree scale but that can be extended to multicategory,

polytomous, Likert-type response scales. Compared to dicho-

tomous response data, IRT models for polytomous response

data pose significantly greater demands in terms of large

samples, limited item pools, or both (Drasgow and Hulin,

1990). However, the future availability of efficient estima-

tion methods is likely to reduce the incremental data

demands for polytomous response data. For the preceding

conditions, an appropriate IRT model is the two-parameter

logistic (2PL) model for dichotomous response data (Birn-

baum, 1968; Reiser, 1981), which has been extended to

polytomous response data as Samejima’s (1969) graded

response model.

Second, the mathematical model is characterized by its

parameters. For a typical CTT model, such as the common

factor model, a single parameter, referred to as a factor

loading (l), is specified to capture the association between

the observables and the underlying latent variable. In

contrast, the 2PL IRT model specifies two distinct param-

eters to model the observables–latent variable relationship.

These parameters are referred to as the discrimination or

sensitivity parameter (ai) and the threshold or affectivity

parameter (bi). Although I interpret the IRT parameters at a

later point in the paper, it is noteworthy that the ai
parameter is analogous to the l parameter in CTT (Hulin,

Drasgow, & Parsons, 1983). As such, the IRT model

hypothesizes an additional parameter (bi) for which there

is no parallel in CTT. This additional parameter often

yields additional information about the relationship

between individual observed variables and the underlying

latent variable.

Third and finally, the mathematical model is described by

a specific equation utilized to operationalize the correspond-

ence rules embodied in a measurement theory. In CTT, a

typical model is the common factor model. For this model,

the observed score (X) is related to the true score (T) via a

factor loading (l) as follows:

Xi ¼ liTi þ ei ð1Þ

where i indexes an item or observable and e represents the

random error component. In other words, the regression of X

on T is linear, with a slope of l (see Appendix B for more

details). In contrast, the 2PL IRT model defines a nonlinear

function that relates the probability of agreeing with a

specific item [Pi(q)] to the underlying latent variable (q) and
via item parameters ai and bi. Although early IRT models

utilized the normal ogive function, currently, a logistic

function is commonly employed to model the relationship

between the probability of checking the ‘‘agree’’ or ‘‘yes’’

category and the underlying attitude as follows.

PiðqÞ ¼
1

1þ exp½�aiðq� biÞ�
ð2Þ

It may be noted that the observed Xi does not figure directly in

this definition, only the probability of agreeing does (see

Appendix B for more details). In this sense, IRT models are

probabilistic models in which it is assumed that an

individual’s response to a specific item is inherently a

stochastic process. Also noteworthy is that IRT models

include an expression for the difference between the

individual respondent’s score on the latent construct (q) and
item characteristic (bi) on a common scale. This allows for

joint scaling of stimulus (items) and respondents on a

common metric. Although it is evident that CTT and IRT are

different measurement theories owing to their underlying

hypotheses and mathematical models, the implications of

these differences for key measurement issues are less clear.

To clarify these implications and provide concrete compara-

tive analysis, I next analyze the RC and RA scales by CTT

and IRT approaches.

4. IRT vs. CTT: comparative results from RC and

RA constructs

We must also admit the possibility that our measurement

theories. . .may not be equally valid in all settings.

Perhaps simpler models will not be misleading in some

settings but would produce serious biases in others. As a

general rule, the more diverse the settings and more

indirect the measurement, the more complex our

measurement theories must be.

Blalock (1984, p. 57).

Initially, I examine the hypothesis common to CTT and

IRT models for the RC and RA scales. To be specific, both

models hypothesize unidimensionality (Table 1). In addi-

tion, the IRT model used here assumes that the RC and RA

scales are conditionally independent, which implies unidi-

mensionality (see Appendix B). I recognize that, in some

contexts and for some item content, unidimensionality is not

sufficient for conditional independence, as other depend-
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ence structures may be exhibited (Bradlow et al., 1999).

Although different approaches are available for testing the

consequences of unidimensionality (Zhang and Stout,

1999), I sought converging evidence by using two

approaches that are commonly utilized in CTT and IRT

tradition: (a) parallel analysis (Horn, 1965) and (b) subset

method (Bejar, 1980). A parallel analysis involves (1)

obtaining ‘‘actual’’ eigenvalues from the correlation matrix

of scale items, (2) computing ‘‘parallel’’ eigenvalues from a

correlation matrix of equal number of random items based

on equal size of sample as the actual data, and (3) compar-

ing the actual and parallel eigenvalues to determine the

number of actual eigenvalues that exceed the highest par-

allel eigenvalue. This comparison yields evidence concern-

ing the dimensionality of the scale items (Humphreys and

Montanelli, 1975). Typically, multiple sets of random data

are generated, and expected values of parallel eigenvalues

are obtained to avoid any idiosyncratic effects. By contrast,

the subset method involves (1) splitting the total item set

into an arbitrary number of subsets such that each subset

contains a relatively homogenous pool of items, (2) estim-

ating the threshold parameters for each item separately on

the basis of the total set and its subset, and (3) plotting the

pairs of threshold estimates obtained (i.e., total set vs.

subset). Bejar (1980) suggested that the unidimensionality

of an item set is supported if the plot of threshold parameters

follows a straight line with a slope of unity. This slope is

equivalent to the correlation between the two sets of IRT

parameters. Below, I implement both procedures, starting

with the parallel analysis.

The four highest eigenvalues for the correlation matrix of

the combined set of 15 RC and RA items are 5.98, 1.95, 1.04,

and 0.91. By comparison, the analytically derived parallel

eigenvalues are 1.36, 1.27, 1.21, and 1.15. Because only two

actual eigenvalues exceed the highest parallel eigenvalue,

this suggests that the combined set of RC and RA items

measures two distinct factors. Nevertheless, the first actual

eigenvalue of 5.98 indicates the presence of a dominant

higher-order factor that captures 40% of the variance in the

combined set of RC and RA items (Hattie, 1985). To confirm

the evidence of unidimensionality, I separately analyzed the

RC and RA items as well. For the eight RC items, the first

four actual eigenvalues are 3.91, 0.99, 0.81, and 0.57, while

the corresponding parallel eigenvalues are 1.51, 1.06, 0.99,

and 0.93. This comparison clearly supports the unidimen-

sionality of RC items. Likewise, in support of the unidimen-

sionality of the seven RA items, the four largest eigenvalues

are 3.96, 0.84, 0.78, and 0.52, with corresponding parallel

values of 1.11, 1.02, 0.95, and 0.89. Significantly, the first

eigenvalue explains over 48% of the total variance in RC

items and over 56% of the total variance in the RA items. This

pattern of eigenvalues provides further support for the unidi-

mensionality of the RC and RA items.

In order to implement the subset method, I split the eight

RC items into odd (Items 1, 3, 5, and 7) and even subsets

(Items 2, 4, 6, and 8; see Appendix A). Using the computer

program MULTILOG, I fitted a 2PL IRT model to the items

in each of the subsets and to the total set of RC items. In

accord with Bejar (1980), the corresponding pairs of thresh-

old parameters estimated for each RC item from the subset

vs. the total set were plotted as shown in Fig. 1. I followed

the same procedure for RA items where the odd subset

contained four items (Items 1, 3, 5, and 7) while the even

subset included the remaining three items. The plot of subset

vs. total set threshold parameter estimates is also displayed

in Fig. 1. To supplement a visual inspection of Fig. 1, I also

computed a Pearson correlation between the corresponding

pairs of RC and RA threshold parameter estimates. Finally,

because the parallel analysis indicated the presence of a

single, dominant higher-order factor in the combined set of

RC and RA items that explains over 40% of the total

variance, I conducted an additional subset analysis with

the total set of RC and RA items and two subsets composed

of either the RC items or the RA items. Drasgow and

Parsons (1983) noted that IRT parameter estimates are

robust to multidimensionality when a dominant, single

higher-order factor underlies a set of multidimensional

items. This latter analysis allowed examination of the

robustness of IRT estimates for the combined set of RC

and RA items.

Fig. 1 provides evidence in support of both the unidi-

mensionality of RC and RA measures and the robustness of

IRT parameter estimates obtained from the combined set of

RC and RA items. The Pearson correlations for the corres-

ponding pairs of threshold parameter estimates from the

total set and subset are .97 and .99 for the RC and RA

measures, respectively. In accord with this finding, the

graphs in Fig. 1a and b indicate that the corresponding pairs

fall closely along the 45� line, representing perfect corres-

pondence. Moreover, the correlation for the corresponding

pairs from the combined set of RC and RA items and the

individual subsets is .99. Consistent with this, Fig. 1c

provides evidence for the robustness of IRT estimates

obtained from the combined set. As noted earlier, this

coheres with the findings of Drasgow and Parsons (1983).

Taken together, the preceding findings suggest that the

measures do not violate underlying assumptions of CTT

and IRT analysis and may be appropriate for a comparative

study. I begin with results from a CTT analysis.

4.1. Analysis of RC and RA scales using the CTT approach

Because the factor structure underlying the RC and RA

measures is well specified, confirmatory factor analysis was

used to implement the CTT approach. I estimated a meas-

urement model of two underlying factors with the eight RC

items allowed to load freely on one factor and the seven RA

items allowed to load freely on the second factor. The

relationship between the underlying factor and the RC/RA

measure is modeled as per the CTT equation in Eq. (1) and

displayed in Table 1. No cross-loadings were modeled, and

the two factors were allowed to correlate freely. The
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Fig. 1. IRT assumptions: testing for evidence of unidimensionality of Rizzo et al.’s RC and RA constructs.
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software (EQS) was used to obtain CTT estimates via the

elliptically reweighted least squares (ERLS) procedure

(Bentler, 1995). The results are in Table 2.

Table 2 reveals that the CTT model fits the data for RC

and RA measures reasonably well. Although the c2 statist-

ics is significant (c2 = 280.4, df = 89, P < .01), indicating

that the reproduced covariances differ statistically from the

observed covariances among the combined set of RC and

RA items, this statistics is known to be biased for sample

sizes exceeding 200 (here, N = 472). Consequently, I focus

on other indicators to judge the goodness-of-fit. The relative

fit indicators, such as the comparative fit index (CFI) and

normed fit index (NFI), evaluate the degree to which a

hypothesized model is an improvement over a null model,

with values exceeding 0.95, indicating reasonably well-

fitting models. The absolute fit indicators, such as the

standardized root mean square residual (RMSR) and root

mean square error of approximation (RMSEA), provide an

indication of discrepancy between the observed and repro-

duced covariances, with values from less than 0.05 to 0.08,

suggesting well-fitting models (Marsh et al., 1996). Finally,

the non-normed fit index (NNFI), also known as the

Tucker–Lewis index, is a measure of model parsimony

balancing incremental fit with the df such that values

exceeding 0.95 indicate parsimonious models (Marsh et

al., 1996). Although the different fit indicators emphasize

different aspects of model fit, Table 2 reveals that the

hypothesized two-factor model meets or exceeds the good-

ness-of-fit criteria for each of the indicators discussed.

These observations provide confidence in the CTT model

fitted to the RC and RA data.

Moreover, Table 2 yields additional evidence in support

of the CTT model. Each RC/RA measure has a theoretically

meaningful, statistically significant, and substantial loading

on its corresponding factor (all loadings > 0.35, P < .01).

Recall that the cross-loadings have been constrained to be

zero in accord with the underlying theory of RC and RA

measures. This pattern of loadings supports the convergent

validity of the RC and RA items. The RC and RA factors

are estimated to correlate at .58, indicating that the two

factors possess discriminant validity. Finally, each of the

role factors has an estimated Cronbach’s a reliability that

exceeds .70, indicating that the measures capture significant

systematic variance (Nunnally, 1978).

4.2. Analysis of RC and RA scales using the IRT approach

A 2PL IRT model was estimated for eight RC and seven

RA items using MULTILOG software (Thissen, 1991).

Each of the RC and RA responses was dichotomized, with

respondents who agreed with an item or responded at the

scale’s midpoint coded as 1 and respondents disagreeing

with the item coded as 0. Post hoc dichotomization of a

multiple-category response scale can result in loss of

information and bias (e.g., consistency with actual responses

on a dichotomous response scale; also see Cohen, 1983), but

I chose this approach to keep the discussion simple and

focused on IRT principles. As noted earlier, the 2PL IRT

model has a counterpart in the graded response model for

polytomous response data, and the principles discussed here

can be easily extended. MULTILOG utilizes a marginal

maximum likelihood (MML) method for estimating model

parameters that appears to work well with the small to

moderate-sized samples common to much marketing

research (N = 100–500). Appendix B provides some details

on estimation issues for IRT models. Advanced discussions

are available in McDonald (1999), Fischer (1995), and van

der Linden and Hambleton (1997). The specific program

lines utilized to run the MULTILOG software are provided

in Appendix C.

The estimated ai and bi parameters for the 2PL IRT

model and overall fit statistics are given in Table 3. Overall,

the IRT model yields a G2 statistics of 1738.2 with

df = 32,737. This goodness-of-fit statistics is a likelihood

ratio c2 statistics based on the ratio of observed and

expected frequencies (Thissen, 1991). Although this G2

statistics is not appropriate for evaluating overall good-

ness-of-fit, it can be effectively used to compare different

models by computing a difference statistics and evaluating it

relative to the difference in the df. Included in Table 3 are

Table 2

CTT results: analyzing RC and RA scales by utilizing the confirmatory

factor analysis proceduresa

Item Factor 1b Factor 2b

RC1 0.62 (0.050)

RC2 0.78 (0.048)

RC3 0.70 (0.050)

RC4 0.71 (0.050)

RC5 0.58 (0.052)

RC6 0.79 (0.047)

RC7 0.44 (0.054)

RC8 0.50 (0.053)

RA1 0.46 (0.053)

RA2 0.67 (0.049)

RA3 0.38 (0.054)

RA4 0.80 (0.046)

RA5 0.89 (0.049)

RA6 0.85 (0.045)

RA7 0.78 (0.047)

Interfactor correlations

Factor 1 1.00

Factor 2 .58 1.00

Goodness-of-fit statistics

c2 (df) 280.4 (89)

Comparative fit index 0.96

Normed fit index 0.95

Non-normed fit index 0.96

Standardized root mean square residual 0.05

Root mean square error of approximation 0.07

90% confidence interval 0.062–0.081

Cronbach’s a reliability estimate 0.85 0.86

a The confirmatory factor analysis was implemented using the ERLS

estimation procedure in EQS.
b Estimated factor loading coefficient with standard error in paren-

theses. All coefficients are significant at P =.05.
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the estimated standard errors for each parameter estimate. A

test of significance (e.g., H0: ai = 0) can be constructed by

dividing the parameter estimate by its standard error and

evaluating the resulting number as a t statistics with

(N� free parameters estimated) df. Based on the estimated

ai and bi parameters, the functional relationship between the

probability of agreeing ( y-axis) and the underlying latent

variable (x-axis) can be estimated for each RC and RA item

(following Eq. (2)). Fig. 2 displays the IRF for selected

items. Note that IRFs are monotonically increasing S-

shaped curves that are bounded between 0 and 1 along the

y-axis but are unbounded along the x-axis.

The IRF provides an interpretation of IRT item param-

eters. Note that in Fig. 2 that the x-axis is the latent variable

(referred to as q) and any point on the y-axis is interpreted as

the probability of agreeing among individuals with the

corresponding level of the latent trait on the x-axis [written

as Pi(q)]. As such, Pi(q) is usually not considered as the

response for any one given individual. The discrimination or

sensitivity parameter (ai) is proportional to the slope of the

IRF at its inflection point. The greater the ai parameter

estimate, the steeper the slope and, consequently, the

more sensitive (or discriminating) the item to variability

along the x-axis (i.e., latent variable) in the neighborhood

of the inflection point. In this sense, the interpretation of

the ai parameter parallels that of l in CTT. An important

point of distinction is that although l is constant

throughout the range of a latent continuum, ai is defined

only at the point of inflection. An examination of Table 3

reveals that ai parameter estimates range from 0.80 (RA1)

to 3.25 (RA5) and, without exception, achieve significance

(all t values >2, P < .01). In general, RA items have larger ai
estimates than RC items, suggesting that the former are more

sensitive (or discriminating) than the latter.

The threshold or affectivity parameter (bi) is the value of

q at the inflection point of the IRF. Technically, bi defines

that value of q at which Pi(q) = 0.50. The notion of threshold

or affectivity captures the idea that some items have a higher

threshold for agreement, making them more difficult to

agree with than other items. For instance, Andrich (1978,

p. 565) observed that it is possible to find instances where

‘‘an agree response to an item of moderate affective value is

equivalent to a neutral response to an item of high affective

value.’’ Consistent with this, the greater the bi parameter

estimate, the higher the q value at the point of inflection, the
greater the item affectivity and, for a random sample, the

smaller the probability of agreeing with the item for any

value of the latent variable (i.e., q). Table 3 reveals that bi
estimates range from � 0.37 (RC7) to 2.07 (RA1). Because

q is a standard variable, this suggests that the affectivity of

the RC and RA items lies between 0.4 standard deviations

below the mean (i.e., � 0.37) and two standard deviations

above the mean (i.e., 2.07). As such, the preceding range of

affectivity delineates the ‘‘effective’’ range of a set of

items.3 Specifically, the effective range of RC and RA items

appears to be between � 0.4s and 2s. More specifically, the

effective range for RC items appears to be between � 0.4s
and 1.5s, while the RA items appear to be effective between

0.8s and 2.1s.

4.3. A comparison and assessment of CTT and IRT results

In order to facilitate a comparison between the two

approaches, in Fig. 3, I overlay the response functions from

CTT and IRT analysis for selected items. In so doing, I

recognize that the expected value of the latent variable in

CTT (T) is not equivalent to the expected value obtained in

IRT (q); however, Fig. 3 is useful for illustration purposes.

For CTT analysis, the x-axis represents the underlying latent

variable in standardized units and the y-axis represents the

observed scores on any given item. The CTT functional

relationship is as per the equation X̂ = lT, such that the slope

of the regression line equals the corresponding factor load-

ing from Table 2. For instance, the functional relationship

Table 3

IRT results: estimated MML parameters for the RC and RA itemsa

Item ai
b bi

b

RC1 1.19 (0.20) 0.58 (0.14)

RC2 1.59 (0.24) 0.70 (0.11)

RC3 1.16 (0.23) 1.49 (0.24)

RC4 1.17 (0.22) 1.29 (0.22)

RC5 0.97 (0.17) 0.56 (0.17)

RC6 1.75 (0.27) 0.76 (0.11)

RC7 0.87 (0.16) � 0.37 (0.18)

RC8 0.93 (0.16) 0.11 (0.16)

RA1 0.80 (0.19) 2.07 (0.46)

RA2 1.70 (0.25) 0.85 (0.13)

RA3 0.84 (0.18) 2.00 (0.43)

RA4 3.21 (0.70) 1.64 (0.13)

RA5 3.25 (0.50) 1.11 (0.09)

RA6 3.23 (0.52) 0.89 (0.08)

RA7 2.43 (0.33) 0.80 (0.10)

Goodness-of-fit

G2c 1738.2

df 32737

a The IRT model was estimated using the software MULTILOG. For

sake of simplicity, a two-parameter model was estimated in accord with Eq.

(2) in the text.
b The standard error of the corresponding estimate is in parentheses.

The ai parameter refers to the discrimination or sensitivity parameter, while

bi is the threshold or affectivity parameter.
c This is a goodness-of-fit statistics and is computed as a likelihood

ratio of the expected and observed frequencies. The G2 statistics follows a

c2 distribution.

3 The notion of effective range is based on the following logical

arguments: (1) a set of items is effective if it helps to discriminate among

people with different amounts of a latent variable, (2) the ability to

discriminate is parameterized as the discrimination or sensitivity parameter

(ai) in IRT, (3) the parameter ai is not constant throughout the range of q, (4)
instead, ai is defined at the point of inflection where q = bi, and as one

moves away from this point the slope decreases and the item sensitivity

declines, (5) consequently, bi defines the neighborhood around which a

particular item is effective, and (6) finally, for a set of items, the range of bi
estimates sets the effective range.
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Fig. 2. IRT principles: IRFs estimated for the relationship between observed responses and latent continuum.
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Fig. 3. CTT vs. IRT principles: response functions estimated for the relationship between expected observed responses and underlying latent continuum.
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for RC1 amounts to X̂ = 0.62T. Thus, the higher the factor

loading, the steeper the slope, and, consequently, the stron-

ger the relationship between observed and true scores. At

the same time, it is evident from Fig. 3 that the CTT model

does not allow recognition of the bounded and categorical

nature of observed responses. That is, the linear relationship

implies that (1) infinite response categories are available

(since the regression lines in Fig. 3 extend to positive and

negative infinity on both axes) and (2) response categories

are continuous numbers that allow individuals to check any

incremental number along the scale for recording observed

responses (for instance, say 2.3, since the x-axis maps onto

all real values on the y-axis).

Three comments are noteworthy in comparing the CTT

and IRT results displayed in Fig. 3. First, the IRT model

appears more realistic in mapping the relationship between

observed and latent variables. The IRT model views the

observed scores as probabilities of agreeing (or disagreeing)

with an item. This probabilistic view is consistent with the

cognitive process that underlies individuals’ responses to

questionnaire items (Reiser, 1981). That is, an individual’s

response is not based solely on his/her ‘‘true’’ standing on

the latent variable but is also affected by other cognitive

processes that interfere with his/her response. Such cognit-

ive processes include distracting information and events,

mood swings and processes, social desirability and other

biases, and random memory processes. Thus, among a

group of individuals who have the same ‘‘true’’ standing

on a latent variable, the probability of each person’s agree-

ing with the item is neither 0 nor 1; instead, it is a finite,

nonzero number between 0 and 1. Consistent with this

notion, the IRT model bounds the observed response prob-

abilities between 0 and 1. By contrast, as noted above, the

CTT model is unbounded and continuous along the

observed scores ( y-axis), assuming that the responses are

obtained on an intervally scaled response format. At the

same time, a CTT model allows for random errors in

response processes by modeling the variability along the

item response regression line and including an additive

component to represent measurement error (noted as e in

Eq. (1)). However, to the extent observed scores in reality

(1) are often bounded by a limited number of scale categor-

ies (e.g., a five- to nine-point Likert scale) and (2) occur

only as categorical options, since responses between any

two categories are not scaled (i.e., a response of 1.5 is often

not allowed), it appears that the IRT’s probabilistic model-

ing is an advantage. As such, in the words of Blalock

(1984), although the CTT model is simpler than the IRT

model, the former may not be as appropriate as the latter to

model realistic response data.

Second, the CTT and IRT models differ in terms of their

parameters. Recall that the IRT model has two parameters

(ai and bi) while the CTT model has just one (l). Moreover,

although the item sensitivity parameter (ai) and the factor

loading parameter (l) are analogous to each other, the IRT

model estimates an additional parameter to capture item

affectivity (bi). Indeed, if the RC and RA items were equally

effective, the bi parameter would be a constant across the

RC and RA items. On the contrary, if item affectivity varied

significantly across items, the bi parameter estimates would

provide meaningful information about item responses. The

affectivity equivalence assumption can be tested in IRT

analysis by constraining the bi parameters to equal each

other for all RC and RA items. I estimated a constrained IRT

model for the RC and RA items and obtained a goodness-of-

fit statistics G2 (bi’s fixed) of 1974. This value compares

with a G2 (bi’s free) of 1738 for the unconstrained IRT

model (see Table 3). The difference between these G2

statistics (Gdiff
2 = 1974� 1738 = 236) provides a c2 statist-

ics for testing the validity of constraining conditions (This-

sen, 1991). Thus, the affectivity equivalence hypothesis that

the bi’s are constant for all RC and RA items is evaluated as

cdiff
2 = 236 with df = 14 (15 bi’s constrained, one bi esti-

mated), implying that the hypothesis is rejected resound-

ingly (P < .001). Consistent with this, the affectivity of RC

and RA items varies from � 0.37 to 2.07, covering a range

of about 2.5 standard deviations on the latent trait scale

(Table 3). Clearly, affectivity equivalence is not a tenable

proposition for the RC and RA items.

Third, since a nonlinear model subsumes a linear func-

tion, the IRT model can approximate a CTT model; how-

ever, the reverse is not true. For instance, an examination of

Fig. 3 suggests that, in the case of item RC7, the IRT and

CTT models are reasonably similar (except at the extremes);

however, in the case of RC1 and RA5, clear differences are

discernable. Evidently, the linear CTT model is unable to

faithfully capture the nonlinear processes underlying items

such as RA5 and RC1. Because the IRT model is more

general, realistic, and appropriate, the conclusion that, at

least for RC and RA scales, the CTT model is statistically

inappropriate appears warranted. Moreover, since there is

nothing inherently unique about the way the RC and RA

concepts were developed or operationalized, it is likely that

the conclusion about the appropriateness of the IRT model is

relevant for other marketing constructs as well.

Few would argue with the statistical merits of IRT but it

is evident that the investment in IRT entails nontrivial costs,

even, to some, a heavy price. This price exacted for using

IRT includes learning a mathematically complex measure-

ment theory, understanding estimation issues and software

handling, greater data demands, and deriving sound and

meaningful interpretations of IRT models. Are IRT’s benefits

worth its price? I believe that it is of critical importance to

address this question in the context of measurement research

in marketing. Put another way, before embracing IRT,

marketing researchers should critically and closely examine

the cost/benefit tradeoffs involved despite the measurement

theory’s technical merits. Clearly, it is not possible to

resolve this question within the framework of a single article

such as this. Instead, I will attempt to take an initial step in

this direction by outlining the benefits of IRT in the context

of RC and RA concepts. I hope to delineate specific
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instances in which the use of IRT is likely to be beneficial.

However, to fully convey its benefits, I first discuss IRT

information functions (IFs) that are germane to its use.

5. Key IRT characteristic: IFs and

measurement precision

IRT views the precision (or standard error) of measure-

ment from an informational perspective. This perspective

departs substantially from an approach based on CTT.

Typically, the precision of measurement under CTT is

estimated utilizing a reliability coefficient that represents

the average precision of a given scale across all respondents

in a sample.4 Several reliability estimates are available, with

selection depending upon the scale of measurement, the

number of items, and the research design used; examples are

the Spearman–Brown coefficient, Cronbach’s a, and the

test– retest reliability coefficient (Zeller and Carmines,

1980). Under IRT, the precision of measurement is based

on information [I(q)] and the standard error of q [s(qe);
Lord, 1980; Mellenbergh, 1996). Mathematically, s(qe)
equals the inverse square root of I(q). Conceptually, the

more information one has with which to estimate q, the
smaller the error of the estimate and higher the measurement

precision. Thus, information is inversely related to meas-

urement error and positively related to measurement pre-

cision. More specifically, s(qe) defines a confidence interval
around the estimate of the latent variable q. The interpreta-

tion of s(qe) is in accord with standard statistical methods,

that is, a 95% confidence interval for the latent variable is

estimated as [q ± 1.96s(qe)]. Consequently, as information

about q[I(q)] increases, the confidence interval around q
[s(qe)] decreases and, as a result, measurement precision

increases (Lord, 1980). Interpretationally, information or

measurement precision parallels the notion of reliability.5

The notion of information for any item i [i.e., Ii(q)] is
itself defined as follows:

IiðqÞ ¼
fP0

iðqÞg
2

fPiðqÞQiðqÞg
ð3Þ

where Pi(q) is the probability of agreeing for the ith item

as per Eq. (2), Qi(q) is the probability of disagreeing

(i.e., [1�Pi(q)]), and Pi
0(q) is the first partial derivative of

Pi(q) (i.e., d[Pi(q)]/dq). Because the value of Ii(q) varies

with q, the former is often referred to as the item IF (IIF).

In order to illustrate the IIF of Eq. (3), Fig. 4 displays the

IRF and IIF for a specific item (RA4) based on asymptotic

standard error estimates obtained from MULTILOG. Fig. 5

provides IIFs separately for all RC and RA items using

corresponding asymptotic SE estimates.

Fig. 4 reveals that the notion of information and meas-

urement precision has several unique properties under IRT.

First, unlike CTT reliability estimates, information for any

item is not a constant. Rather, it is estimated as a function of

the latent variable q, such that different levels of q are

associated with different values of information. As an

illustration, consider item RA4. Fig. 4 indicates that the

information provided by RA4 is relatively insignificant

when the latent variable is either below the midpoint (i.e.,

q < 0.0) or more than two and a half standard deviations

above the mean (i.e., q>2.5). However, in between this

range (0.0 < q < 2.5), item RA4 provides meaningful

information (values ranging from 0.1 to 1.5). In this sense,

information and, consequently, measurement precision is

defined locally for each and every value of q (Lord, 1980).
Second, the shape of the IF depends solely upon item

parameters. In particular, the IIF peak occurs at that point on

the latent variable where q equals the affectivity parameter

(bi) for any given item. As such, for RA4, IIF peaks when q
equals 1.64, the estimated affectivity parameter for this item

(cf. Table 3). Because an IIF peak represents the most

information an item can provide and, by definition, the

most measurement precision it can yield, the affectivity

parameter defines that point on the latent continuum around

which an item is most effective. Furthermore, the height of

the IIF peak is related to the sensitivity parameter (ai). That

Fig. 4. IRT characteristics: IRF and IIF estimated for item RA4.

4 In fact, the standard error of measurement s(q) is related to reliability

rxx by the following formula: s(q) = sx
p
(1� rxx), where sx is the standard

deviation of observed scores (cf. Nunnally, 1978, p. 218).
5 In fact, Green et al. (1984) have proposed a MRI based on IRT’s

characteristics of information and standard error of measurement. This MRI

can be calculated and compared with appropriate CTT indices of reliability

(e.g., Cronbach’s a). Computationally, MRI is computed as s2(q)� s2(qe)/
s2(q), where s2(q) is the variance of the latent variable q and s(qe) is the
standard error of measurement. Recall that s2(qe) = 1/Ii(q).
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is, the greater the estimated value of ai, the steeper the slope

of the IRF and the higher the peak value of IIF.6 Note, for

instance, that the peak value of RA2’s IIF is significantly

smaller than that for RA4, since the former item has an

estimated sensitivity parameter (aRA2 = 1.70) that is about

half the estimated value for the latter (aRA4 = 3.21). As such,

RA4 provides significantly higher measurement precision

than RA2. In this sense, the amount of information provided

by any item is a function of its sensitivity, whereas the

location of this information is determined by its affectivity.

Third, IRT provides IIFs for each item on the scale,

independent of other items. As such, it is legitimate to

expect that some items provide effective measurement on

the extreme values of q and that other items are more

effective in the middle range. For instance, Fig. 5 reveals

that RA1 is informationally effective for the positive

extreme values of the latent variable (i.e., q>2); items

RA2, RA6, and RA7 are effective in the middle range

(i.e., � 1 < q < 1); and none of the RA items are effective

for the negative extreme values of q (i.e., q <� 1.5). More

importantly, the IIF characteristic of any specific RA or RC

item is not likely to change even if additional RA or RC

items are added to (or deleted from) the overall scale. This is

because IIFs depend solely on item parameters that, in turn,

are invariant (Dorans, 1985).

Fourth, the overall informational content of a scale of n

items, referred to as the test or scale IF, is defined as the

additive function of n IIFs for the individual items (Eq. (4)).

Mathematically,

IðqÞ ¼
Xn
i¼1

IiðqÞ ð4Þ

Fig. 6 displays the IFs for the eight RC and seven RA items.

Like the IIFs, the IF is inversely related to the standard error

of measurement and is positively related to measurement

precision; however, in this instance, these characteristics

refer to the entire scale. Otherwise, the interpretation of IFs

parallels that of IIFs. For instance, Fig. 6 suggests the

following conclusions: (1) the RA scale has more informa-

tional content and thus yields greater measurement precision

than the RC scale (i.e., peak IFRA>peak IFRC); (2) for

q <� 0.10, the RC scale is more effective than the RA scale

(i.e., for all q <� 0.10, IFRC>IFRA); (3) however, for

q>� 0.10, the RA scale is more effective than the RC scale

(i.e., for all q>� 0.10, IFRA>IFRC); and finally (4) both

scales have poor measurement precision for q>2.50 and

q <� 2.50.7

In comparison to the CTT approach for conceptualizing

and estimating measure reliability (Nunnally, 1978), the

Fig. 5. IRT characteristics: IIFs estimated for Rizzo et al.’s RC and RA items.

6 In particular, the peak value of any item’s IIF is proportional to the

square of its discrimination parameter. Thus, for two hypothetical items,

whose ai parameters are such that a1 = 2 * a2, the corresponding information

functions will satisfy the condition that peak IIF1 = 4 * peak IIF2.

7 The MRI can be calculated for the RC and RA scales. For the RA

scale, the peak IF value is around 4.9, so that s2(qe) equals 1/4.9 or 0.20.

Assuming the variance of latent variable is 1 in accord with its standard

units (i.e., s2(q) = 1), the MRI at the IF peak for RA is (1� 0.20/1), which

equals 0.80. However, for the RC scale, the peak IF is only 2.0. Thus, the

MRI at the IF peak for the RC scale is only 0.50.
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IRT-based IFs propose a radical departure from conven-

tional thought. This departure is so radical that some

psychometricians, like Samejima (1977, p. 243), have gone

so far as to conclude that CTT-based reliability is a ‘‘dead

concept in test theory.’’ In general, comparisons between

CTT and IRT approaches to measurement precision rest on

four differences. First, a CTT-based reliability index such as

Cronbach’s a is a joint property of all of the items on the

scale and the particular individuals sampled.8 Individual

items cannot be generally indexed by a reliability measure,

especially in cross-sectional data. In contrast, IIFs are

defined for each item, independent of other items on the

scale. Second, for a given sample, Cronbach’s a provides a

constant estimate for measurement precision. Stated differ-

ently, the reliability of a scale of n items is unaffected by the

specific level of the underlying latent variable being meas-

ured, such as the negative or positive extremes of the latent

continuum. In contrast, IIFs are defined locally for each and

every value of the latent variable. Third, estimates of Cron-

bach’s a are likely to vary across samples. This is evident

since a is a function of observed variance, which in turn is a

function of sample homogeneity. In contrast, IIFs are the-

oretically invariant because they are solely dependent on item

parameters. Fourth, Cronbach’s a itself is valid under some

very strict assumptions. Namely, that the n scale items are

parallel or t-equivalent, that is, they have equal or linearly

proportional true scores (Zeller and Carmines, 1980). In

addition, it is assumed that the error variances are uncorre-

lated across the n scale items. Although the validity of these

assumptions can be empirically investigated (e.g., using

LISREL), such investigation is rare in marketing research.

Several researchers have observed that these requirements are

difficult to meet in empirical responses (Samejima, 1977).

6. Utilizing IRT to tackle contemporary measurement

problems: an illustration using RC and RA concepts

Next, I discuss how IRT can be utilized to address the

four specific measurement problems noted in Section 1. I

make no claim that IRT analysis invariably provides a better

solution to the measurement problems than does CTT, or

even that it always provides a satisfactory solution. Rather,

my intention is to illustrate the comparative potential of the

two approaches to solve contemporary measurement prob-

lems and enhance the tool kit of marketing researchers.

Table 4 summarizes the key points discussed below.

6.1. Bandwidth–fidelity problem

In discussing the bandwidth–fidelity problems for the

RC and RA constructs, King and King (1990) noted that,

although the RC and RA constructs appear to have accept-

Fig. 6. IRT characteristics: IFs estimated for Rizzo et al.’s RC and RA constructs.

8 For the sake of my discussion, I focus on Cronbach’s a simply

because this reliability measure is widely used in marketing research.

However, the arguments apply to other reliability measures as well.
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Table 4

IRT vs. CTT approaches: some implications for contemporary measurement issues

Measurement issue CTT approach IRT approach

Bandwidth– fidelity problem

Select a unidimensional set of items that are either

(a) similar to each other or

(b) different from each other

Select items that maximize fidelity or reliability.

No consideration given to bandwidth issues, as items are

assumed to be equivalent.

Explicitly consider bandwidth– fidelity tradeoffs.

With a finite set of items, it is impossible to

maximize both bandwidth and fidelity.

Often favors items that are similar to each other. Select a unidimensional set of items that provide

information at either a defined range of the underlying

construct to maximize fidelity or at different points

along the construct continuum to maximize bandwidth.

Directional factors problem

Develop a unidimensional set of items that is either

(a) worded in the same direction or

(b) split the set with half the items worded in the positive

direction and remaining items worded in the negative direction.

Select items that are worded in the same direction to avoid

factors that reflect direction of wording.

Use either option as the IRT procedures appear less

sensitive to directional factors.

Common analytical approaches (e.g., factor analysis) are

sensitive to directional factors.

Include positive and negative worded items for each

construct allows partialling out the effect of

direction-of-wording.

Scale efficiency problem

To reduce respondent burden and improve data quality,

select a ‘‘short form’’ of a given scale by selecting items that either

(a) preserve reliability or

(b) preserve validity.

Select items with the highest factor loadings. This approach

provides maximal reliability for the short form.

Short forms involve bandwidth– fidelity tradeoffs. Items

may be selected for maximal fidelity by selecting items

that provide maximal information in a range of interest

along the underlying continuum.

No clear guideline available for selecting items that directly

preserve validity.

Select items for maximal bandwidth so that they provide

maximal information at different points the

construct continuum.

Preceding choices will likely produce different short forms.

Scale refinement problem

In working with a well-established construct, a researcher has to decide between

(a) using the original set of items without making any alterations

and/or additions even though contextual and temporal changes make the

original set less relevant and

(b) developing a ‘‘new’’ construct to tap current

reflections of the phenomenon and establish its reliability and validity.

Use the original scale items without alterations. Reliability

and validity indicators are properties of the entire scale.

Altering or adding items can change scale properties in ways

that can not be easily discerned or determined.

Use the notion of a construct item bank to add additional

items to address current fidelity or bandwidth gaps.

A ‘‘new’’ construct may also be developed by starting anew. Use the information functions to identify poor or

redundant items for the purposes of improving the

quality of the bank by either deleting the item or

altering it.

Considering the purpose of the study, select specific

items from the bank to provide peaked or flat scale

information function.
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able reliabilities in most empirical research, the operational

constructs developed by Rizzo et al. (1970) are conceptually

deficient as they fail to tap the underlying richness of the

focal concepts. Although King and King’s analysis is the-

oretically compelling, little empirical evidence is available

from CTT analysis to suggest that the RC and RA constructs

are psychometrically weak. Past empirical work coheres with

my CTT results—RC and RA items load on separate factors,

with strong loadings, high reliabilities, and low interfactor

correlation—indicating psychometric support for the RC and

RA constructs. Not surprisingly, Jackson and Schuler (1985)

noted in their metaanalysis that over 85% of the past studies

had used these operational measures.

In order to obtain an IRT perspective, I examined the

scale and IIFs for RC and RA constructs provided in Figs. 5

and 6. This examination provides several interesting insights

into bandwidth–fidelity issues for the RC and RA con-

structs. By bandwidth, I mean the range of underlying trait

for which an item or scale provides reasonable measurement

precision. First, the RC construct has a wider bandwidth

than the RA construct since IF values for the former cover a

wider range along the role stress continuum than those for

the latter. Second, and in contradiction to the first, the RA

construct has significantly higher fidelity (i.e., precision)

than the RC measure since, for all q>� 0.10, the IF

magnitude for the former far exceeds that of the latter.

Third, on the basis of the marginal reliability index

(MRI), neither measure satisfies acceptable standards of

reliability (i.e., >0.70). The sole exception is the RA

construct when utilized in the range {0.25 < q < 1.5}, since
the IF exceeds 3.3 (and MRI 0.70) only in this range. In

sum, the RC and RA constructs suffer from serious band-

width–fidelity problems; the Rizzo et al. constructs have

small empirical bandwidths and lack fidelity over much of

their empirical bandwidths. Thus, my illustrative IRT results

provide the empirical evidence that King and King lacked in

their incisive and compelling theoretical analysis.

Why did the CTT analysis fail to reveal this shortcoming?

The CTT analysis is based on correlational data. When items

correlate highly, they tend to produce high factor loadings

and large reliability coefficients. However, correlations are

not defined locally for different values of the underlying

latent variable. Rather, they are based on aggregating across

all possible values of the latent variable. Apparently,

although the RC construct lacks precision at any single

value of the latent continuum (i.e., MRI < 0.7, for all q),
when aggregated across all q values, the CTT reliability

appears acceptable (a>.70). Likewise, a CTT-based reliabil-

ity coefficient may tell us if a measure is reliable or not, but

it tells us nothing about where and in what range of the

latent continuum this reliability exists. This seems to be the

case for the RA construct. Clearly, the RA construct is

reliable, but as the IRT analysis reveals, it provides meas-

urement precision only in a narrow range of q.
Is it plausible that increasing precision will invariably

result in narrower bandwidth? Although the illustrative

example does not directly address this issue, there is grow-

ing recognition that, while including (or selecting) similarly

worded items increases reliability, such increases undermine

the validity (or bandwidth) of the focal construct. This

notion is consistent with Churchill and Peter’s (1984, p.

370) metaanalytic results indicating that increasing reliabil-

ity tended to favor selection of ‘‘items (which) were so

similar (to each other) that they underidentify constructs.’’

Such a finding is anomalous from the standpoint of CTT but

poses no problems for IRT. Rather, IRT explains why such

apparently anomalous results may arise and aids researchers

by explicitly revealing the bandwidth–fidelity tradeoffs.9

6.2. Directional factors problem

The ‘‘direction of wording’’ issue poses an interesting

dilemma for marketing researchers—it appears to be a good

psychometric practice to include both positively and neg-

atively worded items for each construct, but doing so often

increases the dimensionality of a construct by creating

unnecessary ‘‘directional’’ factors (i.e., corresponding to

positively and negatively worded items; Richardson, 1936;

Idaszak and Drasgow, 1987). Consequently, psychometric

recommendations to marketing researchers have vacillated

between ‘‘equal number of positive and negative items’’ and

‘‘all items in one direction.’’ To date, no clear guidelines for

choosing between these options exists.

The RC and RA constructs provide an interesting illus-

trative example in this regard. Note that all the RC items in

the Appendix A are worded negatively (i.e., agreement

implies greater RC), and all of the RA items are worded

positively (i.e., agreement implies lower RA). This is a

variation of both the recommendation to have equal num-

bers of positive and negative items and the recommendation

to have all items in one direction. To the extent positively

and negatively worded items generate directional factors, it

is clear that these factors will be aligned completely along

the substantive RC and RA factors. This alignment in turn is

likely to lead to overestimation of the discriminant validity

of the RC and RA constructs. That is, the obtained evidence

for the discriminant validity of RC and RA constructs may

be partly (or wholly) the result of direction-of-wording

factors, depending on the sensitivity of the analytical

procedures to directional factors.

The evidence of discriminant validity from CTT analysis

appears unequivocal. A model that does not allow cross-

loadings fits the data for RC and RA items fairly well,

9 Readers might find the tradeoffs apparent. By selecting items that

have IIF peaks around the same point on the latent continuum, it is possible

to significantly enhance the fidelity of the scale, but such fidelity is

localized. This is because the overall scale information, and hence the

fidelity of the scale, is an additive sum of the individual IIFs. In contrast, if

items are selected so that they peak at different points on the latent

continuum, one can attain wide bandwidth, but the fidelity at any local

value of q is likely to be relatively small.
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producing significant and large factor loadings. In addition,

the epistemic correlation between RC and RA constructs is

only .58, indicating that less than 35% of the variance is

common among them. However, as noted above, the factor-

loading pattern is also consistent with the positive and

negative directional factors. Thus, the evidence of discrim-

inant validity is probably inflated, and certainly confounded,

by directional factors. What if each of the RC and RA

constructs had equal numbers of positive and negative

items? In this instance, it would have been possible to

separately estimate the directional factors and obtain a less

biased evidence for the discriminant validity of the RC and

RA constructs.

Howell et al. (1988) conducted such a study. Howell et

al. modified Rizzo et al.’s RC and RA constructs so that

each construct had equal numbers of positively and

negatively keyed items. Upon analyzing these revised

measures, Howell et al. observed, ‘‘(We) provide a rel-

atively strong indication that the (two-factor) structure that

factor analysis has suggested for years with regard to

these scales may be a result of method artifact rather than

true differences in the RA and RC constructs as oper-

ationalized.’’ Howell et al. went on to conclude that the

RC and RA constructs as developed by Rizzo et al. lack

discriminant validity, although the underlying concepts of

RC and RA might well be conceptually distinct (King and

King, 1990).

In this context, the IRT analysis offers interesting per-

spectives. Two (or more) constructs are likely to be redund-

ant if the informational content in each scale is not unique.

Such is the case with the RC and RA constructs, since a

significant range along the latent continuum does not exist

where either (1) the IF for RC is large and the IF for RA is

small or (2) the IF for RA is large and the IF for RC is small.

Thus, the results from IRT analysis appear to suggest that

RC and RA measures lack discriminant validity. This

finding coheres with my earlier analysis indicating that

pooling the RC and RA items does not appear to violate

Bejar’s condition for unidimensionality. More importantly,

to the extent that RC and RA are theoretically distinct

concepts (King and King, 1990), it is apparent that Rizzo

et al.’s measures fail to faithfully account for these theor-

etical differences.

Clearly, CTT approaches are more sensitive to directional

factors than IRT procedures. In a simulation study using

CTT approaches, Schmitt and Stults (1985, p. 367) reported

that ‘‘regardless of data source, when only 10% of the

respondents are careless. . ., a clearly definable negative

factor is generated.’’ In contrast, IRT analysis appears less

sensitive to wording effects, as the parameter estimates

remain largely invariant to pooling RC and RA items (Lord,

1980). Thus, it is probable that the evidence of discriminant

validity obtained in CTT analysis is an artifact of the

positive and negative wordings of items. Although more

research may be necessary to resolve this issue, it is evident

that, although the CTT approach falters when confronted

with direction of wording artifacts, the IRT approach

remains somewhat robust (see Table 4).

6.3. Scale efficiency problem

Researchers often seek ‘‘short forms’’ of established

scales, since these enhance efficiency by reducing respond-

ent burden and possibly enhance data quality. However, an

efficiency problem arises because it is unclear if short forms

compromise psychometric properties of focal constructs.

This problem is evident for the Rizzo et al.’s RC and RA

constructs, as several researchers have reported using short-

form versions of these constructs (e.g., Singh et al., 1994).

Here, I illustrate the differences between CTT and IRT

approaches by considering a three-item short form for RC

and RA constructs. The arguments have general applicabil-

ity, however.

Under CTT, the recommended practice is to select items

with the highest factor loadings, which preserves the

reliability of the constructs (Bollen and Lennox, 1991).

Thus, if the goal was to select a three-item efficient scale

for RC and RA constructs based on the CTT results in

Table 2, the choice would be items RC2, RC4, and RC6 for

RC and items RA4, RA5, and RA6 for RA. These short

forms produce Cronbach’s a reliabilities of .80 and .88 for

RC and RA, respectively; the corresponding estimates

based on full scales are .85 and .86. Notably, the short

form of the RA scale has higher reliability than the full

scale, indicating the higher level of internal homogeneity

among the selected RA items.

Under IRT, short forms can be developed using different

bandwidth–fidelity criteria. For instance, if a researcher

wants to preserve construct bandwidth, short-form items

may be selected to provide maximal information at different

points along the trait continuum. One way to accomplish

this is to group the RC and RA items in accord with their

affectivity, as shown in Table 5 When multiple items are

available within a given range on the underlying continuum,

an item with the highest sensitivity parameter can be

selected to obtain maximal information. For instance, in

the range of � 1 to < 0, there is only one RC item: RC7.

However, in the range of 0 to < 1, five RC items are

available, of which RC1 is preferred, since it has the highest

Table 5

Grouping of IRC and RA items based on their affectivity

Range of qa Items with corresponding affectivity or

bi parameter estimatesb

from � 3 to <� 2 None

from � 2 to <� 1 None

from � 1 to < 0 RC7

from 0 to < 1 RC1, RC5, RC6, RC2, RC8, RA7, RA6

from 1 to < 2 RC3, RC4, RA4, RA5

from 2 to < 3 RA1, RA3

a This represents the range along the underlying construct continuum.
b This is based on estimates provided in Table 3.
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sensitivity or ai parameter (see Tables 3 and 5). Based on

this, the choices of short-form items are RC7, RC1, and

RC3 and RA7, RA4, and RA1 for the RC and RA

constructs, respectively.

A comparison of RC and RA short forms obtained from

CTT and IRT approaches is in Table 6. First, note that none

of the three RC items selected under each approach appears

on both the CTT and IRT short forms. For the RA construct,

only one item (RA1) appears on both short forms. Second,

the CTT approach preserves reliability, but the IRT approach

does not. The IRT short forms produce reliability estimates

of .60 and .69 for the RC and RA constructs, respectively;

the corresponding values for the CTT short forms are .80

and .88. Consistent with this pattern, the interitem correla-

tions for the CTT short forms are higher than the corres-

ponding interitem correlations for the IRT short forms (see

last row, Table 6). Third, both short forms correlate equiv-

alently with their full scales. That is, both the CTT and IRT

short forms for RA correlate at .93 with the full RA scale.

The RC short forms do likewise. Fourth, the correlation

between the CTT and IRT short forms is not high. For

instance, the RC short forms correlate only at .67, and the

RA short forms correlate at .84. Finally, the correlation

between the RC and RA constructs is lower for the IRT

short forms (.37) than for the CTT short forms (.46).

Overall, as noted in Table 4, the pattern of differences

between the IRT and CTT short forms point to disparate

underlying criteria. For the CTT short form, the criterion is

to preserve fidelity by selecting items with the highest factor

loadings to provide maximal reliability. By contrast, the IRT

criterion is to preserve bandwidth even at the cost of fidelity.

Consequently, reliability suffers, but the IRT short form does

provide broad coverage of the underlying construct. Never-

theless, IRT approaches can be used to select a short form

that preserves fidelity. Achieving this would require that one

select items that maximize information at some local value

of the underlying construct. For instance, given the data in

Table 5, items RC1, RC5, and RC6 can be selected to obtain

maximal fidelity around the (from 0 to < 1) range of the RC

construct. Thus, IRT reveals that scale efficiency often

exacts a price, forcing researchers to make a tradeoff

between preserving bandwidth and fidelity. The CTT

approaches do not reveal such insights.

Moreover, IRT provides a unique approach for achieving

scale efficiency based on adaptive survey designs (Balasu-

bramaniam and Kamakura, 1989; Singh et al., 1990).

Adaptive survey designs are based on the notion that, for

any individual, (1) items that do not provide information

around the neighborhood of the individual’s standing on the

underlying construct are not very useful to administer and

(2) if the survey could be tailored to administer only those

items that are informative, little loss of measurement fidelity

will be likely to occur. When surveys are computerized, it is

possible to implement such adaptive designs and tailor to

each and every individual. Balasubramaniam and Kamakura

(1989) and Singh et al. (1990) provided evidence that such

adaptive designs obtain measurement precision with fewer

items administered to each individual. Such adaptive

designs have yet to gain widespread acceptance but IRT-

based designs promise to deliver innovative solutions to

scale efficiency problems.

6.4. Scale refinement problem

The need for refining the RC and RA constructs is

abundantly clear. Rizzo et al.’s constructs, developed almost

30 years ago, and arguably the most popular scales for

assessing RC and RA, lack discriminant validity and reli-

ably measure a relatively small bandwidth, when the under-

lying concepts are in fact rich, comprehensive, and distinct

(King and King, 1990). In such situations, researchers face

an interesting dilemma: they can either (1) choose to work

with what they suspect are deficient constructs or they can

(2) start anew by developing a ‘‘new’’ construct for meas-

uring the focal concepts. The conventional wisdom is that it

is best to leave the original items intact and use them

without major revisions. This ‘‘take it or leave it’’ guideline

is probably based on the fear that adding or altering items on

a ‘‘well-accepted’’ scale may irrevocably change the mean-

ing of the underlying construct in ways that cannot be easily

discerned or determined. At the same time, starting anew

poses significant effort and data demands while failing to

take full advantage of past scale development work. In

Table 6

Scale efficiency: correlations and statistics for RC and RA short forms

based on CTT and IRT approaches

Construct Intercorrelations

RA(F) RA(CTT) RA(IRT) RC(F) RC(CTT) RC(IRT)

RA(F)a 1.00

RA(CTT)b .93 1.00

RA(IRT)c .93 .84 1.00

RC(F)d .50 .50 .44 1.00

RC(CTT)e .48 .46 .41 .90 1.00

RC(IRT)f .42 .43 .37 .89 .67 1.00

ag .86 .88 .69 .85 .80 .60

Range (r)h .20– .76 .64– .76 .32– .58 .24– .72 .48– .72 .26– .46

a This composite is based on the full scale of RA items from the Rizzo

et al.’s construct.
b This composite is based on a ‘‘short form’’ of RA scale selected using

CTT procedures {RA4, RA5, and RA6}.
c This composite is based on a ‘‘short form’’ of RA scale selected using

IRT procedures {RA7, RA4, and RA1}.
d This composite is based on the full scale of RC items from the Rizzo

et al.’s construct.
e This composite is based on a ‘‘short form’’ of RC scale selected using

CTT procedures {RC2, RC4, and RC6}.
f This composite is based on a ‘‘short form’’ of RA scale selected using

IRT procedures {RC7, RC1, and RC3}.
g This is the estimated Cronbach’s a reliability for the correspond-

ing composite.
h This is the range of interitem correlations for the items included in the

corresponding composite.
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addition, this approach promotes proliferation of constructs

measuring the same concept, with labeling or procedural

differences (e.g., tapping different aspects).

For marketing researchers seeking to deal with the

preceding dilemma, the CTT approach offers little guidance.

Psychometric indicators such as reliability and validity are

properties of an entire scale, making researchers wary of

changing such indicators by adding or altering scale items.

Thus, it is not surprising that the Rizzo et al.’s RC and RA

items have been used for almost 30 years without changes or

alterations, regardless of contextual and temporal differ-

ences. In this sense, the CTT approach promotes a ‘‘take

it or leave it’’ attitude toward well-accepted constructs.

The IRT approach provides a different perspective on

the scale refinement dilemma. First, the IRT approach

favors item banking, whereby additional items are contin-

uously developed and added into a ‘‘bank’’ of items for a

given construct. Such a bank can include items that

demonstrably yield significant information at different

points along the latent continuum (and thus are not

redundant) and that collectively widen the bandwidth of

measurement. For instance, in the case of RA, the IRT

analysis suggests that the item bank is deficient and more

items need to be developed that provide information below

the mean level ( < 0 along the latent continuum). Because

item characteristics are unaffected by including additional

items (as noted in Bejar’s test), the IRT approach encour-

ages building construct item banks by identifying band-

width or fidelity gaps and promoting scale enhancement

efforts to address these gaps. Second, the IRT approach

favors item value analysis, whereby current items are

continuously evaluated for their value in providing

information about the underlying construct. For instance,

in the case of RC, the IRT analysis suggests that item RC5

may offer little value because it (1) has low fidelity (a

parameter estimate < 1), (2) provides peak information

around the midrange (0 to < 1 on the latent continuum),

where several other RC items are effective as well (e.g.,

RC1), and (3) is likely redundant with items RC1, RC2,

and RC6. Of course, the value of RC5 needs to be

evaluated in other contexts and samples before deciding

to either delete it from the bank or refine its wording/

content so that it delivers greater value. In this sense, the

IRT approach promotes regular scale refinement through

item value analysis and, consequently, helps improve the

quality of the construct item bank. Third, the IRT approach

allows for targeted item selection, whereby researchers can

select specific subsets of items from the bank that best fit

the purposes of a given study. That is, because it recog-

nizes bandwidth– fidelity tradeoffs, the IRT approach

implies that, depending on the purpose of a study, certain

items in the bank may not contribute to measurement

fidelity. For instance, a researcher interested in identifying

salespeople who perceive high levels of RA, perhaps as a

screening for a counseling or skill training program, would

likely want to use RA items that provide most of their

information at the high end of the RA continuum and will

be less concerned about fidelity at other points on the latent

continuum. In this case, the researcher’s purpose is best

served by a peaked IF for the RA construct, with the peak

targeted in the range of, say, >1.5. Consequently, my IRT

analysis suggests that in the current RA bank, items RA1,

RA3, and RA4 are best suited to the researcher’s purpose,

and using this subset is unlikely to compromise the desired

measurement fidelity of the RA construct.

Taken together, these insights from the IRT approach

provide guidelines and encouragement for dealing with the

scale refinement dilemma by (1) continuously building

item banks by adding items that fill critical bandwidth–

fidelity gaps, (2) regularly evaluating the value of indi-

vidual items to improve the quality of the item bank, and

(3) selecting different item subsets depending on the

purpose at hand. This ‘‘build it, refine it, and use it’’

approach toward well-established constructs stands in

direct contrast to the CTT approach of ‘‘take it or leave

it’’ and offers different perspectives on scale refinement

efforts (see Table 4 for a summary).

Nevertheless, the IRT approach presented here should be

viewed as an introduction to the large variety of IRT models

available for different types of data and problems. I utilized

several simplifying procedures, including (1) dichotomiza-

tion of graded response scale, (2) a test of dimensionality

based on simple, graphical procedures, and (3) a 2PL IRT

model that assumes a monotonic relationship between the

underlying latent variable and response probabilities.

Approaches for directly analyzing graded response scales

(Samejima, 1969) and alternative unfolding IRT models

(Roberts et al., 2000) are available but involve greater

complexity. Some researchers contend that unfolding IRT

models may be more appropriate for binary data, with the

choices depending on the specific locations of items and

respondents on the latent continuum. Likewise, advances in

testing for the unidimensionality of items (Zhang and Stout,

1999; McDonald, 1981) and the availability of multidimen-

sional IRT models (McDonald, 1999; Reckase, 1997) open

new avenues for future development and applied research.

My aim has been to demonstrate the potential and principles

of IRT, and I hope that readers will be encouraged to delve

into the IRT literature and select the specific IRT model that

is suited to their data and purpose.

7. Concluding comments

IRT is ultimately a theory about processes underlying a

person’s response to a question. . .[IRT] models have

been developed in the context of the long history of

psychological theory about the processes involved when

people answer questions. As a result, the application of

these models provides a form of data analysis that may

be particularly informative.

Thissen and Steinberg (1988, p. 385).
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Theory development in marketing research depends, in

part, on better measurement of concepts. The purpose of

theory is to explain and predict some phenomenon; the

purpose of measurement is to understand the phenomenon

itself. Thus, progress in measurement logically precedes

progress in substantive theory. To facilitate progress in

measurement, in this paper, I set out to provide marketing

researchers an alternative perspective—one based on IRT

—for addressing contemporary measurement concerns. In

the tradition of Davis (1971), I have attempted to dem-

onstrate that IRT offers an alternative and interesting

perspective because it is (1) functionally interesting, reveal-

ing that a phenomenon commonly believed to function

effectively (i.e., maximizing Cronbach’s a) actually func-

tions ineffectively from another standpoint (i.e., that of

bandwidth), (2) generalizationally interesting, since it dem-

onstrates that an apparently general phenomenon (e.g.,

reliability) is in reality a locally defined phenomenon

(e.g., information), and (3) assumptionally interesting, as

it reveals that some commonly held assumptions (e.g.,

linear relationships) are in reality not defensible. Neverthe-

less, it is obvious that IRT-based methods are more com-

plex, lack the inherent simplicity of CTT methods, and

require involved computer programs. In addition, IRT

models are not a panacea for all measurement woes. Like

any other model, IRT imposes its own constraints and

limitations. Thus, it is not recommended that one use IRT

where CTT-based methods are appropriate. Rather, it is

important to use the simplest but most appropriate meas-

urement model. There seems to be considerable published

evidence at this point that CTT assumptions are relatively

strict and difficult to meet in most social sciences research

(Reise and Widaman, 1999; Reise et al., 1993). In contrast,

IRT represents a nonlinear probabilistic model that seems to

be consistent with data in several different situations (van

der Linden and Hambleton, 1999; Drasgow and Hulin,

1990). Further, IRT-based concepts of information, band-

width, and fidelity hold promise for understanding concept

measurement in significantly greater depth. Finally, as the

headnote to this section suggests, IRT is consistent with a

cognitive theory of how people respond to questions. For

these reasons, I argue that IRT warrants the serious attention

of marketing researchers. Future empirical applications of

IRT can critically evaluate its significance and contribution

to marketing theory and research.
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Appendix A. RC and RA items used in the study

* This item is reverse scored.

Appendix B. Mathematical formulations for CTT

and IRT

B.1. Mathematical formulation of CTT

In CTT, the observed score X is related to the true score T

as follows:

Xij ¼ Tij þ eij ðA2:1Þ

where i indexes the item, j indexes the individual

respondent, and e represents the random error component.

The underlying assumptions of CTT include

EðXijÞ ¼ Tij ðA2:2Þ

and

seT ¼ 0 ðA2:3Þ

In other words, the expected value of the observed

response is the individual’s true score, and the true score

is uncorrelated with the random error (Lord and Novick,

RC items

RC1 I have to do things that should

be done differently.

RC2 I receive an assignment without the

manpower to complete it.

RC3 I have to buck a rule or policy in

order to carry out an assignment.

RC4 I receive incompatible requests from two

or more people.

RC5 I do things that are apt to be accepted by

one person and not accepted by others.

RC6 I receive an assignment without the adequate

resources and materials to execute it.

RC7 I work with two or more groups (people) who

operate quite differently.

RC8 I sometimes work on unnecessary things.

RA items

RA1 I feel certain about how much authority

I have. *

RA2 Clear planned goals/objectives exist

for my job. *

RA3 I know that I have divided my

time properly. *

RA4 I know what my responsibilities are. *

RA5 I know exactly what is expected of me. *

RA6 Explanation is clear for what has

to be done. *

RA7 I know how my performance is going

to be evaluated. *
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1968). From Eqs. (A2.1), (A2.2), and (A2.3), it can be

shown that

s2X ¼ s2T þ s2e ðA2:4Þ

That is, the variance of observed scores is the sum of the

variances of true scores and random error. From Eq. (A2.4),

reliability is defined as the ratio of sT
2 and sX

2, which is

equal to (1� se
2)/sX

2.

Although the preceding model is statistical in nature

(because of e), the relationship between Xij and Tij is posited

to be direct (i.e., not probabilistic).

B.2. Mathematical formulation of IRT

B.2.1. Equations

The basic equation in IRT defines a nonlinear response

function that relates the location of an individual j on the

underlying trait (q) to the probability of j’s agreeing with a

specific item i.

PiðqÞ ¼
1

1þ exp½�aiðqj � biÞ�
ðA2:5Þ

where Pi(q) = probability of agreeing with item i, ai= dis-

crimination or sensitivity parameter for item i, bi= threshold

or affectivity parameter for item i, qj = standing on an

underlying latent trait for respondent j.

Let V=(k1,k2,. . .,kn) be the observed response pattern of

the jth respondent ( j = 1,2,. . ., N) to the n items. Each ki, for

instance, can either be 0 (disagree) or 1 (agree). Let PV(q) be
the probability of response pattern V given that the respond-

ent j has qj trait level. That is,

PV ðqÞ ¼ Prob:½ðk1; k2; . . . knÞ=qj� ðA2:6Þ

IRT models utilize the principle of local independence in

order to simplify the Eq. (A2.5). The notion of local

independence implies that the variances and covariances

among item responses can be attributed to only three

sources: (a) systematic variance that can be accounted for by

an underlying latent trait q, (b) unique variance specific to

the item, and (c) random error variance. Thus, under local

independence, Eq. (A2.6) becomes:

PV ðqÞ ¼ Prob:ðk1=qjÞ; Prob:ðk2=qjÞ . . . Prob:ðkn=qjÞ
ðA2:7Þ

In Eq. (A2.7), the probability of the joint distribution of

responses is written as the product of the conditional

probabilities for individual items. Noting that Prob.(ki)

equals Pi(q) if ki= 1 and Qi(q)=[1�Pi(q)] if otherwise (i.e.,

ki = 0), Eq. (A2.7) becomes Eq. (A2.8):

PV ðqÞ ¼ Pk1ðqÞ
k1Qk1ðqÞ

1�k1 � Pk2ðqÞ
k2Qk2ðqÞ

1�k2� . . .

�PknðqÞ
knQknðqÞ

1�kn

¼
Pn
i¼1

PkiðqÞ
kiQkiðqÞ

1�ki :NðqÞ:dðqÞ ðA2:8Þ

The marginal probability for obtaining a response pattern V

is obtained by integrating over N(q) the distribution of q in
the population of interest.

PV ¼
Z þ1

�1

X
PkiðqÞ

kiQkiðqÞ
1�ki :NðqÞ:dq ðA2:9Þ

B.2.2. Estimation issues

Several methods for parameter estimation are now avail-

able, such as the conditional maximum likelihood (CML),

joint maximum likelihood (JML), and MML methods (e.g.,

see Hambleton and Swaminathan, 1985). In general, both the

item (i.e., ai and bi) and trait (i.e., q) parameters are unknown.

However, under the assumptions of random regressors, the

latent trait q is assumed to be a random variable and with

appropriate distributional assumptions regarding q (usually

normality), the trait estimates are removed from the estima-

tion of item parameters by integrating them out of the

likelihood function. This approach is consistent with the

common factor model (McDonald, 1982). In addition, for

‘‘calibration’’ samples, to which the IRT model may be

initially fit, the trait estimates are rarely of interest in and

of themselves. Rather, item parameters are required from the

calibration sample in order to estimate the location of future

respondents on the underlying latent construct.

Thissen (1982) and Bock and Aitkin (1981) have pro-

posed an effective and efficient approach for the estimation

of item parameters under the random regressors model. This

approach is based on the maximization of the log-likelihood

function for the marginal probability distribution of V (Eq.

(A2.9)). Hence, this is often referred to as the MML method.

Bock and Aitkin (1981) show that the EM algorithm can be

modified to implement this approach. In particular, marginal

estimators for item parameters are obtained by iteratively

repeating the EM steps until the process converges to the

following criterion (Eq. (A2.10)):

Maximize : logLðai; bikÞ ¼ log
X

ðA2:10ÞZ X
PkiðqÞ

kiQkiðqÞ
1�ki :NðqÞ:dðqÞ

Statistical properties of the MML estimators for IRT models

have not yet been conclusively established. In contrast to

other available procedures (e.g., JML), however, the

marginal estimators have an ‘‘important advantage’’ because

of their ‘‘theoretical accuracy’’ (Lord 1980, p. 158).

Hambleton and Swaminathan (1985) suggested that such

estimators might have desirable attributes such as consis-

tency and asymptotic normality. In addition, the MML

method offers significant advantages when the number of

scale items is ‘‘relatively’’ small (e.g., 10 or less). Several

computer programs are now available to estimate IRT

parameters (e.g., LOGOG and BILOG). Thissen’s (1991)

MULTILOG is particularly flexible as well as comprehen-

sive for MML estimators of IRT models.
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Appendix C. MULTILOG program lines for estimating

item parameters of RC and RA items

>TITLE

ESTIMATING MML ITEM PARAMETERS FOR ROLE

CONFLICT AND ROLE AMBIGUITY ITEMS FOR

SME DATA

>PROBLEM RANDOM NITEMS= 15 NGROUPS = 1

INDIVIDUAL NEXAMINEES = 472;

>TEST ALL L2

>ESTIMATE NCYCLES = 100 BIG;

>END;

HOW MANY RESPONSE CODES IN RAW DATA?

2

ENTER CODES 2A1

01

ENTER VECTOR OF CORRECT RESPONSES, 79A1

111111111111111

IS ANY CODE MISSING OR NOT-REACHED?

(Y OR N)

N

ENTER FORMAT FOR DATA

(15A1, 18X, F2.0)
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